
1

Traffic Sign Recognition using Convolutional Neural Networks

Spencer R. Karofsky

Computer Science Major; Mathematics Minor

College of Engineering and Mathematical Sciences at the University of Vermont

May 2023-June 2023

2

Abstract:

Artificial Intelligence fascinates me, and I have spent my time outside of my computer science

curriculum teaching myself machine learning, deep learning, neural networks, and computer

vision.

To develop my skills in deep learning and computer vision, I trained a Convolutional Neural

Network to classify eight common traffic signs: Stop, Yield, Do Not Enter, No U-Turn, No Left

Turn, No Right Turn, One Way (Left), and One Way (Right).

First, I custom-built a dataset by creating miniature, freestanding traffic signs, and took dozens

of pictures of each sign. I then applied OpenCV transformations to each image to artificially

enlarge the dataset.

I used the ResNet-50 Neural Network architecture to train the dataset. I chose this architecture

experimentally, as it yielded the best accuracies of all the architectures that I tested over

numerous runs.

During the initial stages of training, I only achieved accuracies that were at best 60-80% on the

validation set. After experimenting with numerous architectures and tuning the hyperparameters,

I achieved a 94.04% accuracy on the validation set and a 95.24% accuracy on the testing set.

Definitions:

3

§ Artificial Intelligence: Computers mimicking and possessing characteristics of human-

like intelligence.

§ Artificial Neural Network: A method in artificial intelligence that teaches computers to

process data through layers of interconnected nodes consisting of inputs, weights, and

biases.

§ Convolutional Neural Network: A type of artificial neural network that uses convolution

layers (a filter/kernel that performs a mathematical operation on the pixels of an image)

to classify images.

§ Deep Learning: A subset of machine learning that uses artificial neural networks to

mimic the human brain. A neural network is considered deep learning if it has three or

more layers.

§ GPU (Graphical Processing Unit): A specialized computer component that improves

processing time on images through the manipulation of memory allocation and de-

allocation.

§ Machine Learning: A subfield of artificial intelligence, which teaches computers to learn

from prior data to make predictions (regression) and classify unseen data.

§ NumPy: A Python open-source linear algebra library used primarily in working with

arrays.

§ OpenCV: A open-source computer vision and machine learning library

§ Preprocessing: Organizing and formatting the data to produce an output for another

program. In the context of deep learning, preprocessing is organizing and formatting the

data to feed into the artificial neural network.

§ Python: high-level general purpose programming language

4

§ TensorFlow: an open-source library primarily used for machine learning and deep

learning applications.

Project Description:

I printed out images of 8 common traffic signs: Stop, Yield, Do Not Enter, No U-Turn, No Left

Turn, No Right Turn, One Way (Left), and One Way (Right).

Stop

i

Yield

ii iii

Do Not Enter

iv

No U-Turn

v

No Left Turn

vi

No Right Turn

vii

One Way (Left)

viii

ix

One Way (Right)

x

xi

I built the dataset by printing images of each sign and creating miniature freestanding traffic

signs using paper cardstock, paperclips, scotch tape, and toothpicks; I printed out two different

signs for some classes which have different variations.

5

1 Miniature Traffic Signs I made to build the dataset

I then took between 40 and 90 pictures of each element, taking pictures of the signs at different

angles and with different backgrounds and lighting conditions to mimic real-life conditions. I

then used OpenCV’s imread() function to read in the images and convert to NumPy arrays so

that each image can be resized to size (224,224,3), where 224 is the width and height of the

image, and 3 is the number of color channels (red, green, and blue). Choosing a width and height

of 224 pixels was motivated by the ResNet-50 Convolutional Neural Network architecture,

which conventionally takes in image inputs of size (224,224,3). Converting the images to

NumPy arrays also makes them compatible with TensorFlow models, which only accept image

inputs in NumPy array format.

6

Below are four example images in the dataset from the Do Not Enter class after being loaded

into the program as NumPy arrays by OpenCV and resized to size (224,224,3).

Other datasets I have worked with have closer to 40,000 to 60,000 images in their datasets; my

custom-built dataset contains only 559 images. I built a function, augmentImage(img), that

creates new images from the base images using the following transformations: rotation,

translation, contrast adjustment, and brightness adjustment. The transformations follow a random

value on a normal distribution (also known as a Gaussian distribution) to introduce Gaussian

noise to the dataset. Including Gaussian noise additionally ensures that the augmented images are

entirely random.

1 The top left image is the base image, and the other images are all generated by augmentImage()

7

This function allowed me to artificially enlarge the dataset to 𝑛 = 𝑏(1 + 𝑐) images for the

dataset size, where n is the total number of images, b is the number of base images, and c is a

constant represented by the variable AUGMENT_SIZE. This enlarges the dataset to 𝑛 =

559(1 + 5) = 3,354 images, where 5 is the constant.

My reasoning for choosing 5 as the constant (which still only enlarges the dataset to a relatively

small size) is twofold. Primarily, the dataset is very simple and lacks a diversity of backgrounds

and setups for each class. Accordingly, the model training on such a large dataset of such similar

images would not improve the accuracy of the model. My secondary reason for a smaller dataset

concerns the training time and computational complexity. Increasing the size of the dataset

increases the number of calculations in the neural network, which increases the training time.

I then split the entire dataset into 3 separate datasets: 80% for training, 15% for validation, and

the remaining 5% for testing in another file.

Finding an optimal neural network architecture that yielded a high accuracy was the most

difficult task. My goal for this project was to build a model that could classify traffic signs with

90% accuracy; going into this project, I didn’t know about the different popular neural network

architectures in academia and industry. I started with a very simple architecture that I had seen in

a TensorFlow tutorial for classifying the MNIST handwritten digits dataset. It had two sets of 2D

convolution layers and subsequent max pooling layers, a dropout layer, a flatten layer, and 2

dense layers. This simple architecture wasn’t accurate, so I tried using the Keras Tuner library,

8

testing for the optimal kernel sizes, number of nodes, and number of epochs to optimize the

validation accuracy.

The hyperparameter tuning took almost an hour to complete. In order to speed up the training

and computation times, I installed the TensorFlow metal plugin to enable GPU support. This

made the model training time roughly 5 times faster, bringing the training time per epoch from

roughly 45 seconds to 11 seconds.

The enabled GPU supportxii allowed me to train and test different hyperparameters and

architectures much faster, and the tuner found the optimal hyperparameter values to be what

seemed unreasonably high. Moreover, using the most optimal hyperparameter values still only

yielded a 60-70% accuracy for the validation set at best, which was nowhere near my goal of

>90% validation accuracy.

I researched the most effective convolutional neural network architectures for image

classification, and settled on AlexNet, and the 50-, 101-, and 152-layer versions of ResNet. I

tested these four architectures over 10 epochs each and experimentally determined that the

9

ResNet-50 architecture yielded the best accuracy.

2 Different ResNet Architecturesxiii

ResNet-50 is clearly the best performing architecture; it achieved a 90% validation accuracy

during the 8th and 9th epochs, but then dropped off to below 30 during the 10th epoch due to

10

overfitting. I ran the trainer with the ResNet-50 architecture over a dozen times, and I would

continuously encounter this issue no matter the epoch hyperparameter setting.

To amend this issue, I researched ways to stop the model from training once the validation

accuracy surpassed a predetermined threshold. I discovered the EarlyStoppingxiv class in

TensorFlow’s callbacks module. I then implemented early callback functionality into the model

and set it to stop training if the model achieved a 90% or high validation accuracy.

It still took multiple runs using this new code to achieve 90% accuracy but using this

functionality, I achieved a 94.04% validation accuracy.

Areas for Improvement and Analysis:

This model is extremely accurate on the dataset that I created, but it fails to correctly classify the

same traffic signs in real life. I attribute this discrepancy to the quality of my dataset, as the

images all used one or two objects for each class, and there was a lack of diversity in

backgrounds. This caused severe overfitting in the dataset, which is why it fails to accurately

predict real-world traffic signs.

A reason why this project is not accurate on real-world traffic signs is due to the size of the

dataset. The dataset has only 3,354 images after augmentation, which is far below other famous

datasets, which commonly have at least 10,000 images. I chose to not augment the dataset to this

size due to the lack of diversity in the dataset; increasing the dataset larger would not have

increased the accuracy on real-world datasets due to the similarities between the images.

11

Overall, I am very satisfied with the final product. This project significantly developed my skills

and confidence in TensorFlow, OpenCV, deep learning, convolutional neural network

architectures, image augmentation, and debugging, and I feel much more capable of taking on

larger and more complex deep learning and computer vision projects in the future.

References:

i https://www.vecteezy.com/free-vector/stop-sign
ii https://etc.usf.edu/clipart/74500/74541/74541_75_r1-2_c.htm
iii https://www.squaresigns.com/templates?name=yield-sign-with-triangle-shape-on-a-yellow-background
iv https://techedsafety.com/do-not-enter-sign/
v https://www.amazon.com/U-Turn-Symbol-Sign-Turn-Around/dp/B08KZDNFZ9
vi https://www.municipalsigns.com/products/r3-2-no-left-turn-
sign?variant=24204918979¤cy=USD
vii https://www.roadtrafficsigns.com/turn-sign/no-right-turn-symbol-sign/sku-x-r3-1
viii https://www.allstatesign.com/one-way-left-sign.html
ix https://www.roadtrafficsigns.com/one-way-sign/one-way-left-arrow-sign/sku-x-r6-1l
x https://www.roadtrafficsigns.com/one-way-sign/one-way-right-arrow-sign/sku-x-r6-1r
xi https://www.roadtrafficsigns.com/one-way-sign/one-way-right-arrow-symbol-sign/sku-x-r6-2r

xii D. Ganzaroli, “Install tensorflow on Mac m1/m2 with GPU support,” Medium,
https://medium.com/mlearning-ai/install-tensorflow-on-mac-m1-m2-with-gpu-support-
c404c6cfb580 (accessed Jun. 25, 2023).

xiii K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770-
778, doi: 10.1109/CVPR.2016.90.
xiv [1]B Chen, “A practical introduction to early stopping in machine learning,” Medium,
https://towardsdatascience.com/a-practical-introduction-to-early-stopping-in-machine-learning-
550ac88bc8fd (accessed Jun. 25, 2023).

